3.26 \(\int \frac{1}{\sqrt{e \cot (c+d x)} (a+a \cot (c+d x))} \, dx\)

Optimal. Leaf size=83 \[ -\frac{\tan ^{-1}\left (\frac{\sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{a d \sqrt{e}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{e} (\cot (c+d x)+1)}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{\sqrt{2} a d \sqrt{e}} \]

[Out]

-(ArcTan[Sqrt[e*Cot[c + d*x]]/Sqrt[e]]/(a*d*Sqrt[e])) - ArcTanh[(Sqrt[e]*(1 + Cot[c + d*x]))/(Sqrt[2]*Sqrt[e*C
ot[c + d*x]])]/(Sqrt[2]*a*d*Sqrt[e])

________________________________________________________________________________________

Rubi [A]  time = 0.218891, antiderivative size = 83, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {3574, 3532, 208, 3634, 63, 205} \[ -\frac{\tan ^{-1}\left (\frac{\sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{a d \sqrt{e}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{e} (\cot (c+d x)+1)}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{\sqrt{2} a d \sqrt{e}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[e*Cot[c + d*x]]*(a + a*Cot[c + d*x])),x]

[Out]

-(ArcTan[Sqrt[e*Cot[c + d*x]]/Sqrt[e]]/(a*d*Sqrt[e])) - ArcTanh[(Sqrt[e]*(1 + Cot[c + d*x]))/(Sqrt[2]*Sqrt[e*C
ot[c + d*x]])]/(Sqrt[2]*a*d*Sqrt[e])

Rule 3574

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/
(c^2 + d^2), Int[(a + b*Tan[e + f*x])^m*(c - d*Tan[e + f*x]), x], x] + Dist[d^2/(c^2 + d^2), Int[((a + b*Tan[e
 + f*x])^m*(1 + Tan[e + f*x]^2))/(c + d*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3532

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-2*d^2)/f,
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x
] && EqQ[c^2 - d^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{e \cot (c+d x)} (a+a \cot (c+d x))} \, dx &=\frac{1}{2} \int \frac{1+\cot ^2(c+d x)}{\sqrt{e \cot (c+d x)} (a+a \cot (c+d x))} \, dx+\frac{\int \frac{a-a \cot (c+d x)}{\sqrt{e \cot (c+d x)}} \, dx}{2 a^2}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{-e x} (a-a x)} \, dx,x,-\cot (c+d x)\right )}{2 d}-\frac{\operatorname{Subst}\left (\int \frac{1}{2 a^2-e x^2} \, dx,x,\frac{a+a \cot (c+d x)}{\sqrt{e \cot (c+d x)}}\right )}{d}\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{e} (1+\cot (c+d x))}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{\sqrt{2} a d \sqrt{e}}-\frac{\operatorname{Subst}\left (\int \frac{1}{a+\frac{a x^2}{e}} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{d e}\\ &=-\frac{\tan ^{-1}\left (\frac{\sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{a d \sqrt{e}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{e} (1+\cot (c+d x))}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{\sqrt{2} a d \sqrt{e}}\\ \end{align*}

Mathematica [A]  time = 0.49418, size = 107, normalized size = 1.29 \[ -\frac{\sqrt{\cot (c+d x)} \left (\sqrt{2} \left (\log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )-\log \left (-\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}-1\right )\right )+4 \tan ^{-1}\left (\sqrt{\cot (c+d x)}\right )\right )}{4 a d \sqrt{e \cot (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[e*Cot[c + d*x]]*(a + a*Cot[c + d*x])),x]

[Out]

-(Sqrt[Cot[c + d*x]]*(4*ArcTan[Sqrt[Cot[c + d*x]]] + Sqrt[2]*(-Log[-1 + Sqrt[2]*Sqrt[Cot[c + d*x]] - Cot[c + d
*x]] + Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])))/(4*a*d*Sqrt[e*Cot[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.036, size = 365, normalized size = 4.4 \begin{align*} -{\frac{\sqrt{2}}{8\,dae}\sqrt [4]{{e}^{2}}\ln \left ({ \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ) }-{\frac{\sqrt{2}}{4\,dae}\sqrt [4]{{e}^{2}}\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }+{\frac{\sqrt{2}}{4\,dae}\sqrt [4]{{e}^{2}}\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }+{\frac{\sqrt{2}}{8\,da}\ln \left ({ \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}+{\frac{\sqrt{2}}{4\,da}\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}-{\frac{\sqrt{2}}{4\,da}\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}-{\frac{1}{da}\arctan \left ({\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt{e}}}} \right ){\frac{1}{\sqrt{e}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c)),x)

[Out]

-1/8/d/a/e*(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d
*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))-1/4/d/a/e*(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2
)^(1/4)*(e*cot(d*x+c))^(1/2)+1)+1/4/d/a/e*(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)
+1)+1/8/d/a/(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(
d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+1/4/d/a/(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2)
^(1/4)*(e*cot(d*x+c))^(1/2)+1)-1/4/d/a/(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)
-arctan((e*cot(d*x+c))^(1/2)/e^(1/2))/a/d/e^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.43016, size = 819, normalized size = 9.87 \begin{align*} \left [\frac{\sqrt{2} \sqrt{-e} \arctan \left (\frac{\sqrt{2} \sqrt{-e} \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}{\left (\cos \left (2 \, d x + 2 \, c\right ) + \sin \left (2 \, d x + 2 \, c\right ) + 1\right )}}{2 \,{\left (e \cos \left (2 \, d x + 2 \, c\right ) + e\right )}}\right ) - \sqrt{-e} \log \left (\frac{e \cos \left (2 \, d x + 2 \, c\right ) - e \sin \left (2 \, d x + 2 \, c\right ) + 2 \, \sqrt{-e} \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right ) + e}{\cos \left (2 \, d x + 2 \, c\right ) + \sin \left (2 \, d x + 2 \, c\right ) + 1}\right )}{2 \, a d e}, \frac{\sqrt{2} \sqrt{e} \log \left (\sqrt{2} \sqrt{e} \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}{\left (\cos \left (2 \, d x + 2 \, c\right ) - \sin \left (2 \, d x + 2 \, c\right ) - 1\right )} + 2 \, e \sin \left (2 \, d x + 2 \, c\right ) + e\right ) - 4 \, \sqrt{e} \arctan \left (\frac{\sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{\sqrt{e}}\right )}{4 \, a d e}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c)),x, algorithm="fricas")

[Out]

[1/2*(sqrt(2)*sqrt(-e)*arctan(1/2*sqrt(2)*sqrt(-e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*(cos(2*d*x
+ 2*c) + sin(2*d*x + 2*c) + 1)/(e*cos(2*d*x + 2*c) + e)) - sqrt(-e)*log((e*cos(2*d*x + 2*c) - e*sin(2*d*x + 2*
c) + 2*sqrt(-e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*sin(2*d*x + 2*c) + e)/(cos(2*d*x + 2*c) + sin(
2*d*x + 2*c) + 1)))/(a*d*e), 1/4*(sqrt(2)*sqrt(e)*log(sqrt(2)*sqrt(e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x
+ 2*c))*(cos(2*d*x + 2*c) - sin(2*d*x + 2*c) - 1) + 2*e*sin(2*d*x + 2*c) + e) - 4*sqrt(e)*arctan(sqrt((e*cos(2
*d*x + 2*c) + e)/sin(2*d*x + 2*c))/sqrt(e)))/(a*d*e)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{1}{\sqrt{e \cot{\left (c + d x \right )}} \cot{\left (c + d x \right )} + \sqrt{e \cot{\left (c + d x \right )}}}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))**(1/2)/(a+a*cot(d*x+c)),x)

[Out]

Integral(1/(sqrt(e*cot(c + d*x))*cot(c + d*x) + sqrt(e*cot(c + d*x))), x)/a

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \cot \left (d x + c\right ) + a\right )} \sqrt{e \cot \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(1/2)/(a+a*cot(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((a*cot(d*x + c) + a)*sqrt(e*cot(d*x + c))), x)